$\qquad$

## Worksheet-Significant Figures and Measurement

A measurement is given. Part 1: Draw several markings on a ruler (for length) or graduated cylinder (for volume) or thermometer (for temperature) that were used to get the measurement. Part 2: State what place the marking indicates. Part 3: State the number of significant figures in the measurement.

Example: 15 m
ANSWER:

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 20 | 30 | 40 | 50 |

Part 1: See ruler above.
Part 2: Marked to the 10s place (ones place is estimated)
Part 3: 15 m is 2 significant figures
a. $\quad 5.04 \mathrm{~mL}$
b. $54 \overline{0} 0 \mathrm{~cm}$
c. 35.300 degrees Celsius
d. $\quad 1000 \mathrm{~L}$
$\qquad$

## Worksheet—Significant Figures and Scientific Notation

1. How many significant figures are in:
a. $\quad 1.204 \times 10^{-2} \mathrm{~g}$
b. $\quad 3.160 \times 10^{8} \AA$
c. $\quad 0.00281 \mathrm{~g}$
d. $\quad 810 \mathrm{ml}$
e. $\quad 12.82$ liters
f. $\quad 3.19 \times 10^{15}$ atoms
g. $\quad 4.300 \times 10^{-6} \mathrm{~cm}$
h. $\quad 0.00641 \mathrm{~g}$
i. $\quad 8.2354 \times 10^{-19} \mathrm{~m}$
j. $\quad 0.0559 \mathrm{~g}$
k. $\quad 2.92 \times 10^{2} \mathrm{~g}$
2. 4.1 liters
m. $\quad 0.0002 \mathrm{~cm}$
n. $\quad 45 \overline{0} \mathrm{~g}$
3. Convert the standard (decimal) notation numbers above into standard scientific notation. Remember to carry all significant figures into the coefficient.
4. Assign $\pm$ error readings to the following measurements
(hint-which digit has uncertainty?) Assume units of 1 ( $0.1,0.01$, etc...)
a. $\quad 3.412 \mathrm{~g}$
b. $\quad 45 \mathrm{ml}$
c. $\quad 0.00498 \mathrm{~g}$
d. $\quad 8.2 \mathrm{~cm}$
e. $\quad 559 \mathrm{~L}$
f. $\quad 1.00 \times 10^{2} \mathrm{~m}$


Part 1: See ruler above.
Part 2: Marked to the 10 s place (ones place is estimated)
Part 3: 15 m is 2 significant figures

2) marked to 0.1 (tenths) place ( 0.01 isestumated)
3) 5.04 mL is 3 SFs .
b. $54 \overline{0} 0 \mathrm{~cm}$
1)
2) marked to 100 s place
 (estimated © last sigifig-tens pla
3) $54 \overline{\mathrm{~cm}}$ is 3 SFS .
c. 35.300 degrees Celsius

2) manned to 0.01 place (hundretho) eothrated © $0.001^{\circ} \mathrm{C}$.
3) $35.300^{\circ} \mathrm{C}$ is 5 SFS (last one $\begin{gathered}\text { westrmated) }) ~\end{gathered}$
d. 1000 L
(only I sig fig! it's estimated! So it's marked to $10,000 \mathrm{~L}$ !)

2) maned to $10,000 \mathrm{~L}$
3) 1 SF.

Worksheet-Significant Figures and Scientific Notation

1. How many significant figures are in:
a. $\quad 1.204 \times 10^{-2} \mathrm{~g} \quad 4$ SF S $^{5}$
b. $\quad 3.160 \times 10^{8} \AA \quad 4$
c. $\quad 0.00281 \mathrm{~g} \quad 3 \quad 2.81 \times 10^{3} \mathrm{~g}$
d. 810 ml 2 (note: $810^{-0}$ or 810 . is $3 \mathrm{SFS} ; 8.1 \times 10^{2}$ i 2 SF
e. $\quad 12.82$ liters $\quad 4 \quad 1.282 \times 10^{\circ} \mathrm{L}$
f. $\quad 3.19 \times 10^{15}$ atoms 3
g. $\quad 4.300 \times 10^{-6} \mathrm{~cm} \quad 4$
h. $\quad 0.00641 \mathrm{~g} \quad 3 \quad 6.41 \times 10^{-3} \mathrm{~g}$
i. $\quad 8.2354 \times 10^{-19} \mathrm{~m} \quad 5$
j. $\quad 0.0559 \mathrm{~g} \quad 3 \quad 5.59 \times 10^{-2} \mathrm{~g}$
k. $\quad 2.92 \times 10^{2} \mathrm{~g} \quad 3$
2. $\quad 4.1$ liters $\quad 2 \quad 4.1 \times 10^{\circ} \mathrm{L}$
m. $\quad 0.0002 \mathrm{~cm} \quad 1 \quad 2 \times 10^{-4} \mathrm{~cm}$
n. $\quad 45 \overline{0} \mathrm{~g} 3 \quad 4.50 \times 10^{2} \mathrm{~g} \quad\left(4.5 \times 10^{2} \mathrm{~g}\right.$ is only 2 SF!)
3. Convert the standard (decimal) notation numbers above into standard scientific notation. Remember to carry all significant figures into the coefficient.
4. Assign $\pm$ error readings to the following measurements (hint-which digit has uncertainty?) Assume units of 1 ( $0.1,0.01$, etc...)
a. $\quad 3.412 \mathrm{~g} \pm 0.001 \mathrm{~g}$
b. $\quad 45 \mathrm{ml} \pm 1 \mathrm{~mL}$
c. $\quad 0.00498 \mathrm{~g} \pm 0.00001 \mathrm{~g}$
d. $\quad 8.2 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$
e. $\quad 559 \mathrm{~L} \pm 1 \mathrm{~L}$
f. $\quad 1.00 \times 10^{2} \mathrm{~m}$
$\rightarrow 1 \overline{00} \mathrm{~m} \pm 1 \mathrm{~m}$.
or

$$
100 . m \pm 1 m
$$

