Name

Worksheet—Significant Figures and Measurement

A measurement is given. Part 1: Draw several markings on a ruler (for length) or graduated cylinder (for volume) or thermometer (for temperature) that were used to get the measurement. Part 2: State what place the marking indicates. Part 3: State the number of significant figures in the measurement.

Example:	15 m	ANSWER:														
-			10	20	0 3	0 4	0 5	0	meters						-	-

Part 1: See ruler above.

Part 2: Marked to the 10s place (ones place is estimated)

Part 3: 15 m is 2 significant figures

a. 5.04 mL

b. $54\overline{0}0$ cm

c. 35.300 degrees Celsius

d. 1000 L

Worksheet—Significant Figures and Scientific Notation

- 1. How many significant figures are in:
 - a. 1.204×10^{-2} g
 - b. $3.160 \times 10^8 \text{ Å}$
 - c. 0.00281 g
 - d. 810 ml
 - e. 12.82 liters
 - f. 3.19×10^{15} atoms
 - g. 4.300×10^{-6} cm
 - h. 0.00641 g
 - i. $8.2354 \times 10^{-19} \text{ m}$
 - j. 0.0559 g
 - $k. \qquad 2.92\times 10^2 \ g$
 - 1. 4.1 liters
 - m. 0.0002 cm
 - n. 450 g
- 2. Convert the standard (*decimal*) notation numbers above into standard *scientific* notation. Remember to carry all significant figures into the coefficient.
- 3. Assign ± error readings to the following measurements (hint—which digit has uncertainty?) Assume units of 1 (0.1, 0.01, etc...)
 - a. 3.412 g
 - b. 45 ml
 - c. 0.00498 g
 - d. 8.2 cm
 - e. 559 L
 - $f. \qquad 1.00\times 10^2 \ m$

*

fils.

SGH

all certain digits

AND one estimated digit > this means the ?

Name

Ker

Worksheet—Significant Figures and Scientific Notation

1. How many significant figures are in:

> $1.204 \times 10^{-2} \text{ g}$ 4 SF S a. 3.160×10^8 Å 4 b. 0.00281 g 3 $\sqrt[3]{5/\times/0^3}$ 3 2.81×10^{3} 9 2 (note: 810 or 810. is 3SFs; 8.1×10^{2} is 2SF) 2 (note: 810 or 810. is 3SFs; 8.10×10^{2} is 3SF) c. 810 ml d. 12.82 liters 4^{1} 1.282 × 10¹ L e. 3.19×10^{15} atoms 3 f. $4.300 \times 10^{-6} \text{ cm}$ 4 g. 0.00641 g $3 \quad 6.41 \times 10^{-3} g$ h. $8.2354 \times 10^{-19} \text{ m}$ 5 i. 3 5,59 × 10-2 9 j. 0.0559 g $2.92 \times 10^2 \,\mathrm{g}$ 3 k. 2 4.1×10°L 4.1 liters 1. $0.0002 \, \text{cm}$ | $2 \times 10^{-4} \, \text{cm}$ m. 3 4.50×102,9 (4.5×102,9 is only a SF!) 450 g n.

- Convert the standard (decimal) notation numbers above into standard scientific 2. notation. Remember to carry all significant figures into the coefficient.
- Assign \pm error readings to the following measurements 3. (hint—which digit has uncertainty?) Assume units of 1 (0.1, 0.01, etc...)

a. $3.412g \pm 0.001g$ b. $45 \text{ ml} \pm 1 \text{ mL}$ use units ! 0.00498 g ± 0.0000 / 9 c. $8.2 \text{ cm} \pm 0.1 \text{ cm}$ d. 559 L ± 1 L e. $1.00 \times 10^{2} \,\mathrm{m}$ f. L 100 m = 1 m. or 100. m ± 1 m